Step of Proof: eq_int_eq_true_elim
9,38
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
eq
int
eq
true
elim
:
1.
i
:
2.
j
:
3. (
i
=
j
) = tt
4.
(
i
=
j
)
i
=
j
latex
by ((RWH (LemmaC `eq_int_eq_false`) 3)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
3. ff = tt
C1:
4.
(
i
=
j
)
C1:
i
=
j
C
.
Definitions
P
Q
,
P
Q
,
a
b
T
,
t
T
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
eq
int
eq
false
,
bool
wf
origin